Friday, November 29, 2019

Bhojraj Lee Paper free essay sample

Accounting Research Center, Booth School of Business, University of Chicago Who Is My Peer? A Valuation-Based Approach to the Selection of Comparable Firms Author(s): Sanjeev Bhojraj and Charles M. C. Lee Source: Journal of Accounting Research, Vol. 40, No. 2, Studies on Accounting, Entrepreneurship and E-Commerce (May, 2002), pp. 407-439 Published by: Blackwell Publishing on behalf of Accounting Research Center, Booth School of Business, University of Chicago Stable URL: http://www. jstor. org/stable/3542390 . Accessed: 15/01/2011 08:35 Your use of the JSTOR archive indicates your acceptance of JSTORs Terms and Conditions of Use, available at . http://www. jstor. org/page/info/about/policies/terms. jsp. JSTORs Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. We will write a custom essay sample on Bhojraj Lee Paper or any similar topic specifically for you Do Not WasteYour Time HIRE WRITER Only 13.90 / page Publisher contact information may be obtained at . ttp://www. jstor. org/action/showPublisher? publisherCode=black. . Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [emailprotected] org. Blackwell Publishing and Accounting Research Center, Booth School of Business, University of Chicago are collaborating with JSTOR to digitize, preserve and extend access to Journal of Accounting Research. http://www. jstor. org Research Journalof Accounting Vol. 40 No. 2 May2002 in Printed U. S. A. Who Is My Peer? A Valuation-Based Approach to the Selection of Comparable Firms SANJEEV BHOJRAJ AND CHARLES M. C. LEE* Received4January2001;accepted4 September2001 ABSTRACT This study presents a general approach for selecting comparable firms in market-based research and equity valuation. Guided by valuation theory, we develop a warrantedmultiple for each firm, and identify peer firms as those having the closest warranted multiple. We test this approach by examining the efficacy of the selected comparable firms in predicting future (one- to three-year-ahead) enterprise-value-to-sales and price-to-book ratios. Our tests encompass the general universe of stocks as well as a sub-population of socalled new economy stocks. We conclude that comparable firms selected in this manner offer sharp improvements over comparable firms selected on the basis of other techniques. 1. Introduction Accounting-based market multiples are easily the most common technique in equity valuation. These multiples are ubiquitous in the reports and recommendations of sell-side financial analysts, and are widely used in *Johnson Graduate School of Management, Cornell University. We thank Bhaskaran Swaminathan, as well as workshop participants at the Australian Graduate School of ManConferagement, Cornell University, Indiana University, the 2001 Journal ofAccountingResearch ence, the 2001 HKUST Summer Symposium, Syracuse University, and an anonymous referee, for helpful comments. The data on analyst earnings forecasts are provided by I/B/E/S International Inc. 407 of of 2002 Copyright University Chicagoon behalfof the Institute Professional Accounting, ? , 408 S. BHOJRAJ C. M. C. LEE AND investment bankers fairness opinions (e. g. , DeAngelo [1990]). They also appear in valuations associated with initial public offerings (IPOs), leveraged buyout transactions, seasoned equity offerings (SEOs), and other merger and acquisition (M) activities. Even advocates of projected discounted cash flow (DCF) valuation methods frequently resort to using market multiples when estimating terminal values. Despite their widespread usage, little theory is available to guide the application of these multiples. With a few exceptions, the accounting and finance literature contains little evidence on how or why certain individual multiples, or certain comparable firms, should be selected in specific contexts. Some practitioners even suggest that the selection of comparable firms is essentially an art form that should be left to professionals. 2 Yet the degree of subjectivityinvolved in their application is discomforting from a scientific perspective. Moreover, the aura of mystique that surrounds this technique limits its coverage in financial analysis courses, and ultimately threatens its credibility as a serious alternative in equity valuation. In this study, we re-examine the theoretical underpinnings for the use of market multiples in equity valuation, and develop a systematic approach for the selection of comparable firms. Our premise is that the popularity of market-based valuation multiples stems from their function as a classic satisficingdevice (Simon [1997]). In using multiples to value firms, analysts forfeit some of the benefits of a more complete, but more complex, pro forma analysis. In exchange, they obtain a convenient valuation heuristic that produces satisfactory results without incurring extensive time and effort costs. In fact, we believe it is possible to compensate for much of the information these multiples fail to capture through the judicious selection of comparable firms. Our aim is to develop a more systematic technique for doing so, through an appeal to valuation theory. Specifically, we argue that the choice of comparable firms should be a function of the variables that drive cross-sectional variation in a given valuation multiple. For example, in the case of the enterprise-value-to-sales multiple, comparable firms should be selected on the basis of variables that drive cross-sectional differences in this ratio, including expected profitability, growth, and the cost-of-capital. 3 In this spirit, we use variables nominated by valuation theory and recent advances in estimating the implied cost-of-capital (i. . , Gebhardt, Lee, and Swaminathan [2001]) to develop a 1 For example, Kim and Ritter [1999] discuss the use of multiples in valuing IPOs. Kaplan and Ruback [1995] examine alternative valuation approaches, including multiples, in highly levered transactions. 2For example, Golz [1986], Woodcock (1992), and McCarthy (1999). We use the enterprise-value-to-sales ratio (EVS) rather than the price-to-sales (PS) ratio because the former is conceptually s uperior when firms are differentially levered (we thank the referee for pointing this out). We also report results for the price-to-book (PB) ratio. We focus on these two ratios because of their applicability to loss firm, which are particularly important among the so-called new economy (tech, biotech, and telecommunication) stocks. However, our approach is general, and can be applied to any of the widely used valuation multiples. WHO IS MYPEER? 409 warrantedmultiple for each firm based on large sample estimations. We then identify a firms peers as those firms having the closest warranted valuation multiple. Our procedures result in two end products. First, we produce warranted multiples for each firmn-that is, a warranted enterprise-value-to-sales (WEVS)and a warranted price-to-book (WPB)ratio. These warranted multiples are based on systematic variations in the observed multiples in crosssection over large samples. The warranted multiples themselves are useful for valuation purposes, because they incorporate the effect of cross-sectional variations in firm growth, profitability, and cost-of-capital. Second, by ranking firms according to their warranted multiples, we generate a list of peer firms for each target firm. For investors and analysts who prefer to conduct equity valuation using market multiples, this approach suggests a more objective method for identifying comparable firms. For researchers, our approach suggests a new technique for selecting control firms, and for isolating a variable of particular interest. Recent methodology studies have demonstrated that characteristic-matched control samples provide more reliable inferences in market-based research (e. . , Barber and Lyon [1997], Lyon et al. [1999]). Our study extends this line of research by presenting a more precise technique for matching sample firms based on characteristics identified by valuation theory. Our approach is designed to accommodate both profitable and loss firms, which have become pervasive in the so called new economy. In short, the methodology developed in this paper can be useful whenever the choice of control firms plays a prominent role in the research design of a market-related study. We test our approach by examining the efficacy of the selected comparable firms in predicting future (one- to three-year-ahead) EVSand PB ratios. 4Our tests encompass the general universe of stocks as well as a sub-population of new economy stocks from the tech, biotech, and telecommunication sectors. Our results show that comparable firms selected in this manner offer sharp improvements over comparable firms selected on the basis of other techniques, including industry and size matches. The improvement is most pronounced among the so-called new economy stocks. The main message from this study is that the choice of comparable firms can be made more systematic and less subjective through the application of valuation theory. In the case of the EVSmultiple, our approach almost triples the adjusted r-squares obtained from using simply industry or industry-size matched selections. The PB multiple is more difficult to predict in general, but our approach still more than doubles the adjusted r-square relative to industry or industry-size matched selections. Interestingly, we find that using the actual multiples from the best comparable firms is generally better than using the warranted multiple itself. Moreover, the choice of comparable 4We forecast future multiples because we do not regard the current stock price as necessarily the best benchmark for assessing valuation accuracy. As discussed later, forecasting future multiples is not equivalent to forecasting future prices or returns. 410 s. BHOJRAJAND C. M. C. LEE firms is, to some extent, dependent on the market multiple under consideration-the best firms for the EVSratio are not necessarily the best firms for the PB ratio. While we illustrate our approach using these two ratios, this technique can be generalized to other common market multiples, including: EBITDA/TEV, E/P, CF/P, and others. In the next section, we further motivate our study and discuss its relation to the existing literature. In section 3, we develop the theory that underpins our analysis. In section 4, we discuss sample selection, research design and estimation procedures. Section 5 reports our empirical results, and section 6 concludes with a discussion of the implications of our findings. . Motivationand Relationto PriorLiterature There are at least three situations in which comparable firms are useful. First, in conducting fundamental analysis, we often need to make forecasts of sales growth rates, profit margins, and asset efficiency ratios. In these settings, we typically appeal to comparable firms from the same industry as a source of reference. Second, in multiples-based valuation, the market multiples of comparable firms are u sed to infer the market value of the target firm. Third, in empirical research, academics seek out comparable firms as a research design device for isolating a variable of particular interest. Our paper is focused primarily on the second and third needs for comparable firms. 5 Given their widespread popularity among practitioners, market multiples based valuation has been the subject of surprisingly few academic studies. Three recent studies that provide some insights on this topic are Kim and Ritter (KR;[1999]), Liu, Nissim, and Thomas (LNT; [1999]), and Baker and Ruback (BR; [1999]). All three examine the relative accuracy of alternative multiples in different settings. KR uses alternative multiples to value initial public offers (IPOs), while LNT and BR investigate the more general context of valuation accuracy relative to current stock prices. KRand LNT both find that forward earnings perform much better than historical earnings. LNT shows that in terms of accuracy relative to current prices, the performance of forward earnings is followed by that of historical earnings measures, cash flow measures, book value, and finally, sales. In addition, Baker and Ruback [1999] discuss the advantages of using harmonic means-that is, the inverse of the average of inversed ratios-when aggregating common market multiples. None of these studies address the choice of comparable firms beyond noting the usefulness of industry groupings. 5 Our technique is not directly relevant to the first situation, because it does not match firms on the basis of a single attribute (such as sales growth, or profit margin). Instead, our approach matches firms on the basis of a set of variables suggested by valuation theory. Our paper also does not address the trivial case whereby a firm is its own comparable. As we point out later, in multiples-based valuation of public firms, a firms own lagged multiple is often the most useful empirical proxy for its current multiple. WHO IS MYPEER? 411 Closer to this study are three prior studies that either investigate the effect of comparable firm selection on multiple-based valuation, or examine the determinants cross-sectional variations in certain multiples. Boatsman and Baskin [1981] compare the accuracy of value estimated based on earningsto-price (EP) multiples of firms from the same industry. They find that, relative to randomly chosen firms, valuation errors are smaller when comparable firms are matched on the basis of historical earnings growth. Similarly, Zarowin [1990] examines the cross-sectional determinants of EPratios. He shows forecasted growth in long-term earnings is a dominant source of variation in these ratios. Other factors, such as risk, historical earnings growth, forecasted short-term growth, and differences in accounting methods, seem to be less important. Finally,Alford [1992] examines the relative valuation accuracy of EPmultiples when comparable firms are selected on the basis of industry, size, leverage, and earnings growth. He finds that valuation errors decline when the industry definition used to select comparable firms is narrowed to twoor three-digit SIC codes, but that there is no further improvement when a four-digit classification is used. He also finds that after controlling for industry membership, further controls for firm size, leverage, and earnings growth do not reduce valuation errors. Several stylized facts emerge from these studies. First, the choice of which multiple to use affects accuracy results. In terms of accuracy relative to current prices, forecasted earnings perform relativelywell (KR,LNT); the priceto-sales and price-to-book ratios perform relatively poorly (LNT). Second, industry membership is important in selecting comparable firms (Alford [1992], LNT, KR). The relation between historical growth rates and EP ratios is unclear, with studies reporting conflicting results (Zarowin [1999], Alford [1992], Boatsman and Baskin [1981]), but forecasted growth rates are important (Zarowin [1999]). Other measures, including risk-basedmetrics (leverage and size) do not seem to provide much additional explanatory power for E/P ratios. Our study is distinct from these prior studies in several respects. First, our approach is more general, and relies more heavily on valuation theory. This theory guides us in developing a regression model that estimates a warranted multiple for each firm. We then define a firms peers as those firms with the closest warranted market multiple to the target firm, as identified by our model. The advantage of a regression-based approach is that it allows us to simultaneously control for the effect of various explanatory variables. For example, some firms might have higher current profitability, but lower future growth prospects, and higher cost-of-capital. This approach allows us to consider the simultaneous effect of all these variables, and to place appropriate weights on each variable based on empirical relations established in large samples. Our empirical results illustrate the advantage of this approach. Contrary to the mixed results in prior studies, we find that factors related to profitability, growth, and risk, are strongly and consistently correlated with the EVS 412 S. BHOJRAJ C. M. C. LEE AND and PB ratios. Collectively, factors that relate to profitability, growth, and risk, play an important role in explaining cross-sectional variations of these multiples. In fact, we find that variables related to firm-specific profitability, forecasted growth and risk are more important than industry membership and firm size in explaining a firms future EVSand PB ratios. Second, we employ recent advances in the empirical estimation of cost-ofcapital (i. e. , Gebhardt et al. [2001]) to help identify potential explanatory variables for estimating our model of warranted market multiples. The risk metrics examined in prior studies are relatively simple, and the results are mixed. We follow the technique in Gebhardt et al. [2001] to secure additional explanatory variables that are associated with cross-sectional determinants of a firms implied cost-of-capital. Several of these factors turn out to be important in explaining EVSand PB ratios. Third, we do not assume that the current stock price of a firm is the best estimate of firm value. Prior studies compare the valuation derived by the multiples to a stocks current price to determine the valuation error. In effect, these studies assume that the current stock price is the appropriate normative benchmark by which to judge a multiples performance. Under this assumption, it is impossible to derive an independent valuation using multiples that is useful for identifying over- or under-valued stocks. Our less stringent assumption of market efficiency is that a firms current price is a noisy proxy for the true, but unobservable intrinsic value, defined as the present value of expected dividends. Moreover, due to arbitrage, price converges to value over time. As a result, price and various alternative estimates of value based on accounting fundamentals will be co-integrated over time. 6 Under this assumption, we estimate a warrantedmultiple that differs from the actual multiple implicit in the current price. Consistent with this philosophy, we test the efficacy of alternative estimated multiples by comparing their predictive power for a firms future multiples (e. g. , its one-, two-, or three-year-ahead EVSand PB ratios). Finally,our approach can be broadly applied to loss firms, including many new economy stocks. Prior studies that examine comparable firms (e. g. , Alford [1992], Boatsman and Baskin [1981], and Zarowin [1999]) focus solely on the EP ratio. A limitation of these studies is that they do not pertain to loss firms. This limitation has become more acute in recent years, as many technology, biotechnology, and telecommunication firms have reported negative earnings. 6 For a more formal statistical model of this co-integrated relationship between price and alternative estimates of fundamental value, see, Lee, Myers, and Swaminathan [1999]. 7 Note that forecasting future multiples is different from forecasting future prices or returns. In the current context, forecasting future price involves two steps: forecasting future multiples, and forecasting future fundamentals (e. g. , sales or book value per share). Our main interest is in the stability of the multiples relation, and not in forecasting fundamentals. An example of fundamental analysis that focuses on forecasting future fundamentals is Ou and Penman [1989]. WHO IS MY PEER? 413 Appendix A provides an indication of the magnitude of the problem. This appendix reports descriptive statistics for a sample of 3,515 firms from NYSE/AMEX/NASDAQ as of 5/29/2000. To be included, a firm must be U. S. domiciled (i. e. , not an ADR), have a market capitalization of over $100 million, and fundamental data for the trailing 12 months (i. . , not a recent IPO). Based on aggregate net income from the most recent four quarters, we divide the sample into profitable firms (78% of sample) and loss firms (22% of sample). Panel A reports the percentage of these firms that have positive EBIT,Operating Income, EBITDA, Gross Margin, Sales, One-year-ahead forecasted earnings (FY1), and book value. This panel shows that only 40% of the loss firms have positive operating income, only 47% have positive EBITDA, and only 34% have positive FY1forecasts. In fact, only 87% of the loss firms have positive gross margins. The only reliably positive accounting measures are sales (100%) and book value (94%). Clearly, these loss firms are difficult to value. However, they are also difficult to ignore. Panel B reports the distribution of realized returns in the past six months (11/31/99 to 5/29/00) separately for the profit firms and loss firms. The returns for the loss firms have higher mean (19. 6% versus 7. 8%), higher standard deviation (111. 3% versus 42. 3%), and fatter tails. As a group, the loss firms appear to be a high-stake game that constitutes a substantial proportion of the universe of traded stocks in the United States. Our study uses the two most reliably positive multiples (EVSand PB). Liu, Nissim, and Thomas [1999] show that these two ratios are relatively poor performers in terms of their valuation accuracy. We demonstrate that by choosing an appropriate set of comparable firms, the accuracy of these ratios can be improved sharply. In particular, we demonstrate the incremental usefulness of the technique for a sub-population of new economy stocks from the technology, telecom, and biotechnology sectors. 3. Development the Theory of The valuation literature discusses two broad approaches to estimating shareholder value. The first is direct valuation, in which firm value is estimated directly from its expected cash flows without appeal to the current price of other firms. Most direct valuations are based on projected dividends and/or earnings, and involve a present value computation of future cash flow forecasts. Common examples are the dividend discount model (DDM), the discounted cash flow (DCF) model, the residual income model (RIM), or some other variant. 8 The second is a relative valuation approach in We do not discuss liquidation valuation, in which a firm is valued at the breakup value of its assets. Commonly used in valuing real estate and distressed firms, this approach is not appropriate for most going concerns. 414 s. BHOJRAJAND C. M. C. LEE which firm value estimates are obtained by examining the pricing of comparableassets. This approach involves applying an accounting-based market multiple (e. g. , price-to-earnings, price-to-book, or price-to-sales ratios) from the comparable firm(s) to our accounting number to secure a value estimate. In relative valuation, an analyst applies the market multiple from a comparable firm to a target firms corresponding accounting number: Our estimated price = (Their market multiple) X (Our accounting number). In so doing, the analyst treats the accounting number in question as a summary statistic for the value of the firm. Assuming our firm in its current state deservesthe same market multiple as the comparable firm, this procedure allows us to estimate what the market would pay for our firm. Which firm(s) deservethe same multiple as our target firm? Valuation theory helps to resolve this question. In fact, explicit expressions for most of the most commonly used valuation multiples can be derived using little more than the dividend discount model and a few additional assumptions. For example, the residual income formula allows us to re-express the discounted dividend model in terms of the price-to-book ratio:10 * PB, Et[(ROEt+i re)Bt+i-l] (1 + re)i Bt i=1 (1) Bt where Pt* is the present value of expected dividends at time t, B, = book value at time t; Et [. ] = expectation based on information available at time t; re = cost of equity capital; and ROEt+i = the after-taxreturn on book equity for period t + i. This equation shows that a firms price-to-book ratio is a function of its expected ROEs, its cost-of-capital, and its future growth rate in book value. Firms that have similar price-to-book ratios should have present values of future residual income (the infinite sum in the right-hand-side of equation (1)) that are close to each other. In the same spirit, it is not difficult to derive the enterprise-value-to-sales ratio in terms of subsequent profit margins, growth rates, and the cost of capital. In the case ofa stable growth firm, the enterprise-value-to-salesratio can be expressed as: EV7 Et(PMxkx(1 + g)) _ (r- g) St where EVZ is total enterprise value (equity plus debt) at time t, St = total sales at time t; Et[. ] = expectation based on information available at 9 A third approach, not discussed here, is contingent claim valuation based on option pricing theory. Designed for pricing traded assets with finite lives, this approach encounters significant measurement problems when applied to equity securities. See Schwartz and Moon [2000] and Kellogg and Charnes [2000] for examples of how this approach can be applied to new economy stocks. 10See Feltham and Ohlson [1995] or Lee [1999] and the references therein for a discussion of this model. See Damodaran [1994; page 245] for a similar expression. WHO IS MYPEER? 415 time t; PM is operating profit margin (earnings before interest); k is a constant payout ratio (dividends and debt servicing costs as a percentage of earnings; alternatively, it is sometimes called one minus the plow-back rate); r = weighted average cost of capital; and g is a constant earnings growth rate. In the more general case, we can model the firms growth in terms of an initial period (say n years) of high growth, followed by a period of more stable growth in perpetuity. Under this assumption, a firms enterprise-valueto-sales ratio can be expressed as: (1+ EVt St EtPMxkx rL? gl)(1- ((1 + gg)n/(l r + r)n)) (1 + gi) n(l + g2) 1 (1+g1)n(1+ g2) nir- (1+r g ]ii (3) where EV7 is the total enterprise value (debt plus equity) at time t, St = total sales at time t; Et[. = expectation based on information available at time t; PM is operating profit margin; k is a constant payout ratio; r = cost of capital; gi is the initial earnings growth rate, which is applied for n years; and g2 is the constant growth rate applicable from period n+ 1 onwards. Equation (3) shows that a firms warranted enterprise-value-to-sales ratio is a function of its expected operating profit margin (PM), payout ratio (k), expected growth rates (gi and g2), and cost of capital (re). If the market value of equity and d ebt approximates the present value of expected cash flows, these variables should explain a ignificant portion of the cross-sectional variation in the EVS ratio. In the tests that follow, we employ a multiple regression model to estimate the warranted EVSand PB ratios for each firm. The explanatory variables we use in the model are empirical proxies for the key elements in the right-hand side of equations (1) and (3). 4. Research Design In this section, we estimate annual regressions that attempt to explain the cross-sectional variation in the EVSand PBratios. Our goal is to develop a reasonably parsimonious model that produces a warrantedmultiple (WEVS or WPB)for each firm. These warranted multiples reflect the large sample relation between a firms EVS (or PB) ratio and variables that should explain cross-sectional variations in the ratio. The estimated WEVS(or WPB) becomes the basis of our comparable firm analysis. 4. 1 ESTIMATING THE WARRANTED RATIOS We use all firms in the intersection of (a) the merged COMPUSTATindustrial and research files, and (b) the I/B/E/S historical database of analyst earnings forecasts, excluding ADRs and REITs. We conduct our analysis as of June 30th of each year for the period 1982-1998. To be included 416 AND s. BHOJRAJ C. M. C. LEE n the analysis a firm must have at least one consensus forecast of longterm growth available during the 12 months endedJune 30th. In the event that more than one consensus forecast was made in any year, the most recent forecast is used. We use accounting information for each firm as of the most recent fiscal year end date, and stock prices as of the end of June. To facilitate estimation of a r obust model, we drop firms with prices below $3 per share and sales below $100 million. We eliminate firms with negative book value (defined as common equity), and any firms with missing price or accounting data needed for the estimation regression. 2We require that all firms belong in an industry (based on two-digit SIC codes) with at least five member firms. In addition we eliminate firms in the top and bottom one percent of all firms ranked by EVS, PB, Rnoa, Lev, Adjpm,and Adjgroeach year (these variables are defined below). The number of remaining firms in the sample range from 741 (in 1982) to 1,498 (in 1998). For each firm, we secure nine explanatory variables. We are guided in the choice of these variables by the valuation equations discussed earlier, and several practical implementation principles. First, we wish to construct a model that can be applied to private as well as public firms, we therefore avoid using the market value of the target firm in any of the explanatory variables. Second, in the spirit of the contextual fundamental analysis (e. g. , see Beneish, Lee, and Tarpley [2000]), we anchor our estimation procedure on specific industries. In other words, we use the mean industry market multiples as a starting point, and adjust for key firm-specific characteristics. 3 Finally, to the extent possible, we try to use similar variables for estimating EVSand PB. Our goal is to generate relatively simple models that capture the key theoretical constructs of growth, risk, and profitability. Specifically, our model includes the following variables, which are also summarized and described in more detail in Appendix B: IndevsThe harmonic mean of the enterprise-value-to-salesmultiple for all the firms with the same two-digit SIC code. For example, for the 1982 regression, this variable is the harmonic mean industry EVS as of June 1, 1982. Enterprise value is defined as total market capitalization of equity, plus book value of long-term debt. This variable controls for industrywide factors, such as profit margins and growth rates, and we expect it to be positively correlated with current year firm-specific EVS and PB ratios. Indpb-The harmonic mean of the price-to-book ratio for all firms in the same industry. This variable controls for industry-wide factors that affect the PB ratio. In addition, Gebhardt et al. [2001] show firms with higher PB 12 The two exceptions are research and development expense and long-term debt. Missing data in these two fields are assigned a value of zero. More specifically, we use the harmonic means of industry EVSand PB ratios, that is, the inverse of the average of inversed ratios (see Baker and Ruback [1999]). WHO IS MYPEER? 417 ratios have lower implied costs of capital. To the extent that industries with lower implied costs-of-capital have higher market multiples, we expect this variable to be positively correlated with EVSand PB ratios. AdjpmThe industry-adjusted profit margin. We comput e this variable as the difference between the firms profit margin and the median industry profit margin. In each case, the profit margin is defined as a firms operating profit divided by its sales. Theory suggests this variable should be positively correlated with current year EVSratios. where Dum is 1 if Adjpm LosspmThisvariable is computed as Adjpm*Dum, is less than or equal to zero, and 0 otherwise. Used in conjunction with Adjpm,this variable captures the differential effect of profit margin on the P/S ratio for loss firms. Prior studies (e. g. , Hayn [1995]) show that prices (and returns) are less responsive to losses than to profits. In univariate tests, this variable should be positively correlated with EVSand PB. However, controlling for Adjpm,this variable should be negatively correlated with EVSand PB ratios. AdjgroIndustry-adjusted growth forecasts. This variable is computed as the difference between a firms consensus earnings growth forecast (from IBES) and the industry median of the same. Higher growth firms merit higher EVSand PB ratios. LevBook leverage. This variable is computed as the total long-term debt scaled by the book value of common equity. In univariate tests, Gebhardt et al. [2001] shows that firms with higher leverage have higher implied costsof-capital. However, controlling for market leverage, they find that book leverage is not significant in explaining implied cost-of-capital. We include this variable for completeness, in case it captures elements of cross-sectional risk not captured by the other variables. Rnoa-Return on net operating asset. This variable is a firms operating profit scaled by its net operating assets. Penman [2000] recommends this variable as a measure of a firms core operation profitability. In our context, having already controlled for profit margins, this variable also serves as a control for a firms asset turnover. We expect it to be positively correlated with the EVSand PB ratios. RoeReturn on equity. This variable is net income before extraordinary items scaled by the end of period common equity. Conceptually, this variable should provide a better profitability proxy in the case of the PB ratio. We use this variable in place of Rnoa as an alternative measure of profitability when conducting the PB regression. Rd-Total research and development expenditures divided by sales. Firms with higher RD expenditures tend to have understated current profitability relative to future profitability. To the extent that this variable captures profitability growth beyond the consensus earnings forecast growth rate, we expect it to be positively correlated with the EVSand PB ratios. In addition to these nine explanatory variables, we also tested three other variables-a dividend payout measure (actual dividends scaled by 418 S. BHOJRAJ AND C. M. C. LEE total assets), an asset turnover measure, and a measure of the standard deviation of the forecasted growth rate. The first two variables add little to the explanatory power of the model. The standard deviation measure (suggested by Gebhardt et al. 2001] as a determinant of the cost-ofcapital) contributed marginally, but was missing for a significant number of observations. Moreover, this measure would be unavailable for private firms. For these reasons, we excluded all three variables from our final model. To recap, our research design involves estimating a series of annual cross-sectional regressions of either the EVSor PB ratio on ei ght explanatory variables. The estimated coefficients from last years regressions are used, in conjunction with each firms current year information, to generate a prediction of the firms current and future ratio. We refer to this prediction as a firms warrantedmultiple (WEVSor WPB). This warranted multiple becomes the basis for our identification of comparable firms in subsequent tests. STATISTICS 4. 2 DESCRIPTIVE Table 1 presents annual summary statistics on the two dependent and nine explanatory variables. The overall average EVS of 1. 20 (median of 0. 94) and average PB of 2. 26 (median of 1. 84) are comparable to prior studies (e. g. , LNT, BB), although our sample size is considerably larger due to the inclusion of loss firms. This table also reveals some trends in the key variables over time. Consistent with prior studies (e. g. Frankel and Lee [1999]) we observe an increase over time in the accounting-based multiples (EVS, PB, Indps, and Indpb) and total RD expenditures (Rd). This non-stationarity in the estimated coefficients could be attributable to systematic changes in the composition of firms over time. For example, the increased importance of the RD variable could reflect the ris ing prominence of technology firms in the sample. The accounting-based rates of return (Rnoa and Roe) and book leverage (Lev) are relatively stable over time. As expected, the industry-adjustedvariables (Adjpm,Losspm,and Adjgro) have mean and median measures close to zero. Overall, this table indicates that the key input variables for our analysis make economical sense. Table 2 presents the average annual pairwise correlation coefficients between these variables. The upper triangle reports Spearman rank correlation coefficients; the lower triangle reports Pearson correlation coefficients. As expected, EVSis positively correlated with the industry enterprise-value-tosales ratio (Indevs) and price-to-book ratio (Indpb). It is also positively correlated with industry-adjusted measures of a firms profit margin (Adjpm) and expected growth rate (Adjgro). It is negatively correlated with book leverage (Lev), and positively correlated with accounting rates of return (Rnoa and Roe), as well as RD expense (Rd). To a lesser degree, EVS is also positively correlated with profit margin among loss firms (Losspm). The results are similar for the PB ratio. All the correlation coefficients WHO IS MY PEER? TABLE 1 StatisticsofEstimationVariables Summary 419 This table provides information on the mean and median of the variables used in the annual estimation regressions. All accounting variables are from the most recent fiscal year end publicly available byJune 30th. Market values are as of June 30th. EVSis the enterprise value to sales ratio, computed as the market value common equity plus long-term debt, divided by sales. PB is the price to book ratio. Indevsis the industry harmonic mean of EVSbased on two-digit SIC codes. Indpbis the industry harmonic mean of PB. Adjpmis the difference between the firms profit margin and the industry profit margin, where profit margin is defined as operating profit divided by sales. Losspmis Adjpm* indicator variable, where the indicator variable is 1 if profit is margin 0 and 0 otherwise. Adjgro the difference between the analysts consensus forecast of the firms long-term growth and the industry average. Lev is the total long-term debt scaled by book value of stockholders equity. Rnoa is operating profit scaled by net operating assets. Rd is the firms RD expressed as a percentage of net sales. year 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 mean median mean median mean median mean median mean median mean median mean median mean median mean median mean median mean median mean median mean median mean median mean median mean median mean median EVS 0. 3 0. 50 0. 98 0. 77 0. 84 0. 69 0. 88 0. 73 1. 07 0. 88 1. 22 1. 00 1. 09 0. 90 1. 07 0. 89 1. 09 0. 89 1. 10 0. 87 1. 15 0. 94 1. 22 1. 02 1. 20 1. 00 1. 36 1. 07 1. 49 1. 13 1. 51 1. 20 1. 59 1. 24 PB 1. 11 0. 93 1. 82 1. 48 1. 46 1. 26 1. 72 1. 46 2. 14 1. 82 2. 31 1. 92 1. 97 1. 70 2. 02 1. 70 1. 99 1. 64 1. 93 1. 54 2. 13 1. 76 2. 48 2. 04 2. 31 1. 98 2. 49 2. 08 2. 75 2. 24 2. 87 2. 41 3. 06 2. 55 Indevs Indpb Adjpm 0. 50 0. 006 0. 92 0. 000 0. 50 0. 92 1. 57 0. 76 0. 002 1. 59 0. 77 0. 000 1. 34 0. 69 0. 001 0. 000 1. 30 0. 72 0. 70 1. 45 0. 004 1. 30 0. 000 0. 72 0. 001 0. 85 1. 7 0. 000 0. 86 1. 69 0. 95 1. 95 -0. 002 0. 95 0. 000 1. 82 1. 69 0. 85 0. 002 0. 80 1. 61 0. 000 0. 84 1. 79 0. 003 0. 76 1. 63 0. 000 0. 83 1. 69 0. 002 0. 79 1. 49 0. 000 1. 65 0. 003 0. 80 1. 39 0. 000 0. 69 0. 87 1. 71 0. 005 0. 78 0. 000 1. 52 0. 90 1. 91 0. 002 0. 000 0. 86 1. 76 0. 89 0. 006 2. 02 0. 86 1. 91 0. 000 0. 95 0. 007 2. 06 0. 93 0. 000 2. 02 1. 01 0. 009 2. 18 0. 98 1. 99 0. 000 0. 005 1. 02 2. 12 1. 07 0. 000 2. 01 1. 09 0. 004 2. 20 0. 000 1. 08 2. 05 Losspm 0. 000 0. 000 -0. 003 0. 000 -0. 004 0. 000 -0. 002 0. 000 -0. 004 0. 000 -0. 007 0. 000 -0. 004 0. 000 -0. 03 0. 000 -0. 004 0. 000 -0. 002 0. 000 -0. 004 0. 000 -0. 002 0. 000 -0. 002 0. 000 -0. 001 0. 000 -0. 002 0. 000 -0. 003 0. 000 -0. 004 0. 000 Adjgro 0. 50 0. 00 0. 21 -0. 05 0. 44 -0. 01 0. 66 0. 00 0. 30 -0. 04 0. 18 -0. 10 0. 29 0. 00 0. 69 0. 00 0. 58 -0. 08 0. 45 -0. 12 0. 23 -0. 19 0. 55 -0. 09 0. 49 -0. 15 0. 73 0. 00 0. 40 -0. 13 0. 36 -0. 17 0. 43 0. 00 Lev 0. 45 0. 36 0. 49 0. 38 0. 43 0. 33 0. 44 0. 32 0. 50 0. 34 0. 54 0. 40 0. 56 0. 43 0. 57 0. 41 0. 61 0. 44 0. 59 0. 45 0. 59 0. 42 0. 58 0. 39 0. 58 0. 36 0. 56 0. 38 0. 58 0. 37 0. 61 0. 36 0. 63 0. 38 Rnoa 20. 85 19. 62 17. 8 16. 18 17. 85 16. 93 19. 96 18. 82 17. 58 16. 41 17. 27 16. 00 19. 05 17. 68 19. 90 18. 54 19. 77 17. 97 19. 00 16. 93 17. 86 15. 97 19. 80 17. 22 20. 08 17. 47 21. 66 18. 72 22. 19 18. 93 21. 56 18. 97 22. 84 20. 24 Roe 14. 39 14. 77 11. 88 12. 82 12. 04 13. 00 13. 49 14. 32 11. 45 12. 92 10. 63 12. 22 12. 61 12. 93 13. 90 14. 71 13. 29 13. 51 11. 91 12. 55 10. 31 11. 29 11. 87 12. 39 11. 57 12. 37 13. 48 13. 18 12. 57 13. 08 12. 46 12. 89 12. 31 12. 76 Rd 1. 23 0. 14 1. 33 0. 09 1. 51 0. 08 1. 66 0. 05 1. 75 0. 00 1. 94 0. 00 1. 83 0. 00 1. 94 0. 00 1. 86 0. 00 1. 96 0. 00 2. 03 0. 00 1. 9 0. 00 1. 90 0. 00 1. 77 0. 00 2. 01 0. 00 2. 01 0. 00 2. 25 0. 00 Pooled mean 1. 20 2. 26 median 0. 94 1. 84 0. 88 0. 81 1. 83 1. 72 0. 004 -0. 003 0. 44 0. 000 0. 000 -0. 05 0. 56 20. 00 12. 35 1. 86 0. 38 17. 96 13. 01 0. 00 are in the expected direction. Except for the correlation between Rnoa and Roe (which do not appear in the same estimation regression), none of the average pairwise correlation coefficients exceed 0. 60. These results suggest that the explanatory variables are not likely to be redundant. 420 S. BHOJRAJAND C. M. C. LEE TABLE 2 Correlation between EstimationVariables This table provides the correlation between the variables. The upper triangle reflects the Spearman correlation estimates; the lower triangle reflects the Pearson correlation coefficients. All accounting variables are based on the most recent fiscal year end information publicly available byJune 30th. Market values are as of June 30th. EVSis the enterprise value to sales ratio, computed as the market value common equity plus long-term debt, divided by sales. PB is the price to book ratio. Indevsis the industry harmonic mean of EVSbased on two-digit SIC codes. Indpbis the industry harmonic mean of PB. Adjpmis the difference between the firms profit margin and the industry profit margin, where profit margin is defined as operating profit divided by sales. Losspmis Adjpm*indicator variable, where the indicator variable is 1 if profit is margin 0 and 0 otherwise. Adjgro the difference between the analysts consensus forecast of the firms long-term growth and the industry average. Lev is the total long-term debt scaled by book value of stockholders equity. Rnoa is operating profit scaled by net operating assets. Rd is the firms RD expressed as a percentage of net sales. Average Correlation (Pearson/Spearman) EVS EVS PB Indevs PB 0. 52 Indevs Indpb 0. 51 0. 16 0. 09 0. 33 0. 35 0. 35 -0. 06 -0. 02 0. 04 0. 02 -0. 01 -0. 05 0. 08 -0. 09 -0. 02 0. 25 0. 03 0. 14 0. 10 0. 06 Adjpm Losspm Adjgro Lev Rnoa Roe 0. 54 0. 08 0. 21 -0. 07 0. 21 0. 28 0. 38 0. 14 0. 60 0. 59 0. 29 -0. 20 -0. 07 0. 04 -0. 01 0. 06 -0. 01 0. 05 0. 15 -0. 03 0. 06 -0. 04 -0. 14 0. 26 0. 06 -0. 17 0. 54 0. 55 0. 26 0. 06 -0. 03 0. 32 0. 28 0. 26 0. 04 0. 04 -0. 01 0. 10 0. 09 -0. 35 -0. 16 0. 02 -0. 12 -0. 02 0. 51 0. 07 -0. 24 0. 75 0. 32 0. 50 0. 38 0. 07 -0. 12 0. 66 0. 06 -0. 10 0. 09 -0. 23 -0. 03 -0. 6 Rd 0. 17 0. 08 0. 19 0. 11 0. 03 -0. 05 -0. 02 -0. 27 0. 03 -0. 03 0. 47 0. 50 0. 04 0. 15 0. 28 Indpb 0. 33 Adjpm 0. 59 0. 09 Losspm 0. 06 0. 29 Adjgro 0. 22 Lev -0. 03 -0. 07 Rnoa 0. 54 0. 22 0. 48 Roe 0. 23 Rd 0. 09 0. 24 5. Empirical Results 5. 1 MODEL ESTIMATION Table 3 presents the results of annual cross-sectional regressions for each year from 1982 to 1998. The dependen t variable is the enterprise-value-tosales ratio (EVS). The eight independent variables are as described in the previous section. Table values represent estimated coefficients, with accompanying p-values presented in parentheses. Reported in the right columns are adjusted r-squares and the number of observations per year. The last two rows report the average coefficient for each variable, as well as a Newey-West autocorrelation adjusted t-statisticon the mean of the time series of annual estimated coefficients. The results from this table indicate that a consistently high proportion of the cross-sectional variation in the EVS ratio is captured by the eight explanatory variables. The annual adjusted r-squares average 72. 2%, and range from a low of 66. 1% to a high of 76. 5%. The strongest six explanaRnoa, nd RD) have the same tory variables (Indevs,Adjpm,Losspm, Adjgro, directional sign in each of 17 annual regressions, and are individually significant at less than 1%. Indpbis positively correlated with EVS in 11 out of 17 years, and is significant at the 5% level. Controlling for Indpb,book WHO IS MY PEER? TABLE 3 Annual EstimationRegressions Warranted for Enterprise-Value-to-Sales This table reports the res ults from the following annual estimation regression: 8 421 EVSi,t = at + j=1 jtCj,i,t + Li,t where the dependent variable, EVS,is the enterprise value to sales ratio as ofJune 30th of each year. The eight explanatory variables are as follows: Indevs is the industry harmonic mean of EVSbased on two-digit SIC codes; Indpbis the industry harmonic mean of the price-to-book ratio; Adjpmis the difference between the firms profit margin and the industry profit margin, is where profit margin is defined as operating profit divided by sales; Losspm Adjpm indicator variable, where the indicator variable is 1 if profit margin 0 and 0 otherwise; Adjgrois the difference between the analysts consensus forecast of the firms long-term growth rate and the industry average; Lev is long-term debt scaled by book equity; Rnoa is operating profit as a percent of net operating assets; and Rd is RD expense as a percentage of sales. P-values are provided in parentheses. The last row represents the time-series average coefficients along with Newey-Westautocorrelation corrected t-statistics. The adjusted r-square (r-sq) and number of firms (# obs) are also reported. Year Intercept 1982 -0. 0623 (0. 13 5) 1983 -0. 0883 (0. 121) 1984 0. 0192 (0. 699) 1985 0. 1337 (0. 002) 1986 0. 0225 (0. 706) 1987 0. 1899 (0. 007) 1988 0. 1774 (0. 0) 1989 -0. 0455 (0. 347) 1990 0. 1083 (0. 027) 1991 0. 2321 (0. 00) 1992 0. 2064 Indevs 1. 2643 (0. 00) 1. 3531 (0. 00) 1. 2778 (0. 00) 1. 2231 (0. 00) 1. 3202 (0. 00) 1. 0908 (0. 00) 1. 0759 (0. 00) 1. 1264 (0. 00) 1. 1263 (0. 00) 1. 0740 (0. 00) 0. 8277 1. 0169 (0. 00) 1. 0027 (0. 00) 1. 0355 (0. 00) 1. 1690 (0. 00) 1. 1714 (0. 00) 1. 0157 (0. 00) 1. 1277 (0. 00) Indpb 0. 1648 (0. 00) -0. 0301 (0. 342) -0. 0015 (0. 964) -0. 0152 (0. 604) 0. 0047 (0. 856) -0. 0324 (0. 339) -0. 0097 (0. 63) 0. 0828 (0. 00) 0. 0322 (0. 019) 0. 0256 (0. 079) 0. 1150 0. 0579 (0. 097) 0. 0027 (0. 913) -0. 0211 (0. 512) 0. 0430 (0. 141) 0. 0366 (0. 264) 0. 1561 (0. 0) 0. 0360 (0. 031) Adjpm 6. 3052 (0. 00) 8. 1343 (0. 00) 6. 9266 (0. 00) 7. 9394 (0. 00) 9. 4308 (0. 00) 9. 8090 (0. 00) 8. 6458 (0. 00) 8. 4475 (0. 00) 9. 3485 (0. 00) 10. 4789 (0. 00) 10. 2810 Losspm -2. 8510 ( 0. 119) -5. 3800 (0. 00) -4. 2894 (0. 00) -4. 0951 (0. 00) -6. 2424 (0. 00) -6. 8296 (0. 00) -6. 9959 (0. 00) -5. 3691 (0. 00) -6. 0607 (0. 00) -6. 9779 (0. 00) -7. 9414 Adjgro 0. 0117 (0. 00) 0. 0392 (0. 00) 0. 0209 (0. 00) 0. 0177 (0. 00) 0. 0316 (0. 00) 0. 0363 (0. 00) 0. 0267 (0. 00) 0. 0225 (0. 00) 0. 0346 (0. 00) 0. 0316 (0. 00) 0. 0329 Lev 0. 0665 (0. 007) 0. 1414 (0. 00) 0. 0707 (0. 012) 0. 0238 (0. 351) -0. 0246 (0. 325) 0. 608 (0. 035) 0. 0228 (0. 27) 0. 0143 (0. 409) -0. 0381 (0. 065) -0. 0430 (0. 06) -0. 0567 Rnoa -0. 0091 (0. 00) -0. 0049 (0. 004) -0. 0088 (0. 00) -0. 0089 (0. 00) -0. 0080 (0. 00) -0. 0041 (0. 014) -0. 0054 (0. 00) -0. 0032 (0. 01) -0. 0037 (0. 005) -0. 0053 (0. 00) -0. 0037 Rd 0. 0194 (0. 00) 0. 0463 (0. 00) 0. 0197 (0. 00) 0. 0153 (0. 00) 0. 0118 (0. 01) 0. 0319 (0. 00) 0. 0281 (0. 00) 0. 0127 (0. 00) 0. 0191 (0. 00) 0. 0134 (0. 00) 0. 0157 0. 0253 (0. 00) 0. 0254 (0. 00) 0. 0680 (0. 00) 0. 0244 (0. 00) 0. 0313 (0. 00) 0. 0229 (0. 00) 0. 0253 (0. 00) R-sq # Obs 74. 40 741 70. 80 73. 45 74. 66 71. 11 66. 84 75. 44 74. 58 73. 54 76. 45 71. 63 71. 1 748 771 797 799 856 787 813 829 855 902 978 (0. 00) 1993 1994 1995 1996 1997 1998 All 0. 1811 (0. 004) 0. 2698 (0. 00) 0. 3148 (0. 00) 0. 0713 (0. 249) 0. 1192 (0. 048) -0. 0269 (0. 683) 0. 1072 (0. 007) (0. 00) (0. 00) (0. 00) (0. 00) (0. 00) (0. 004) (0. 008) (0. 00) 11. 4266 -6. 4058 (0. 00) (0. 00) 10. 6165 -7. 1717 (0. 00) (0. 00) 11. 9432 -9. 2245 (0. 00) (0. 00) 11. 3311-10. 6464 (0. 00) (0. 00) 12. 5771 -7. 5521 (0. 00) (0. 00) 13. 0309-10. 1430 (0. 00) (0. 00) 9. 8043 -6. 7162 (0. 00) (0. 00) 0. 0333 -0. 0129 -0. 0045 (0. 00) (0. 515) (0. 00) 0. 0312 0. 0219 -0. 0060 (0. 00) (0. 202) (0. 00) 0. 0419 0. 0100 -0. 0069 (0. 00) (0. 618) (0. 0) 0. 0623 0. 0001 -0. 0023 (0. 00) (0. 996) (0. 121) 0. 0452 0. 0201 -0. 0032 (0. 00) (0. 278) (0. 011) 0. 0421 0. 0362 -0. 0006 (0. 00) (0. 069) (0. 637) 0. 0330 0. 0184 -0. 0052 (0. 00) (0. 235) (0. 00) 73. 19 1102 75. 37 1190 66. 05 1341 71. 75 1440 66. 65 1498 72. 19 16447 422 AND C. M. C. LEE s. BHOJRAJ leverage (Lev) is not significantly correlated with EVS. Collectively, these results show that growth, profitability, and risk factors are incrementally important in explaining EVSratios, even after controlling for industry means. Note that the estimated coefficients on several of the key explanatory variables change systematicallyover time. For example, the estimated coefficient on the industry adjusted profit margin (Adjpm)and forecasted growth rate (Adjgro)both trend upwards over time, while the coefficient on the industry enterprise-value-to-sales ratio (Indevs) shows some decline in recent years. These patterns imply that, in forecasting future EVSratios, the estimated coefficients from the most recent year is likely to perform better than a rolling average of past years. In subsequent analyses, we use the estimated coefficients from the prior years regression to forecast current years warranted multiple. Table 4 reports the results of annual cross-sectional regressions for the PB ratio. The explanatory variables are the same as for the EVS regression in table 3, except for the replacement of Rnoa with Roe. Table 4 shows that all the variables except Lev contribute significantly to the explanation of PB. The coefficient on Indps is reliably negative. Otherwise, the variables are correlated with PB in the same direction as expected. Overall, the model is less successful at explaining PB than at explaining EVS. Nevertheless, the average adjusted r-square is still 51. 2%, ranging from a low of 32. 8% to a high of 61. 0%. FUTURE RATIOS 5. 2 FORECASTING Recall that our goal is to identify comparable firms that will help us to forecast a target firms future price-to-sales multiples. In this section, we examine the efficacy of the warranted multiple approach in achieving this goal. Specifically, we examine the relation between a firms future EVS and PB ratios, and a number of ex ante measures based on alternative definitions of comparable firms. The key variables in this analysisare defined below. EVSn and PBn, where n = 0, 1, 2, and 3-The current, one-, two-, and three-year-ahead EVSand PB ratios. These are our dependent variables. IEVS and IPBThe harmonic mean of the industry EVS and PB ratios, respectively. Industry membership is defined in terms of two-digit SIC codes. ISEVSand ISPBThe harmonic mean of the actual EVSand PB ratios for the four firms from the same industry with the closest market capitalization. and WPBThe warranted EVSand PB ratios. These variables are WEVS computed using the estimated coefficients from the prior years regression (tables 3 and 4), and accounting or market-based variables from the current year. COMPActual EVS (or PB) ratio for the closest comparable firms. This variable is the harmonic mean of the actual EVS (or PB) ratio of the four closest firms based on their warranted multiple. To construct this variable, WHO IS MY PEER? 423 TABLE 4 Price-to-Book Annual EstimationRegressions Warranted for This table reports the results from the following annual estimation regression: 8 PBi,t = at + E j=1 j,tCj,i,t + ti,t where the dependent variable, PB, is the price-to-book ratio as ofJune 30th of each year. The eight explanatory variables are as follows: Indevsis the industry harmonic mean of EVSbased on two-digit SIC codes; Indpbis the industry harmonic mean of the price-to-book ratio; Adjpm is the difference between the firms profit margin and the industry profit margin, where profit margin is defined as operating profit divided by sales; Losspmis AdjpmeDum, where Dum is 1 if profit margin 0 and 0 otherwise; Adjgrois the difference between the analysts consensus forecast of the firms long-term growth rate and the industry average; Lev is long-term debt scaled by book equity; Roe is net income before extraordinary items as a percent of book equity; and Rd is RD expense as a percentage of sales. The p-values are provided below each of the coefficients in parentheses. The last row represents the time-series average coefficients along with Newey-Westautocorrelation corrected t- statistics. The adjusted r-square (r-sq) and number of firms (# obs) are also reported. Year Intercept Indevs 1 982 -0. 2990 -0. 6056 (0. 00) (0. 00) 1983 -0. 3434 -0. 5129 (0. 00) (0. 001) 1984 -0. 1065 -0. 1806 (0. 143) (0. 099) 1985 -0. 3518 -0. 2882 (0. 00) (0. 09) 1986 0. 0998 -0. 3548 (0. 319) (0. 005) 1987 0. 0632 -0. 6468 (0. 584) (0. 00) 1988 0. 0568 -0. 5150 (0. 566) (0. 00) 1989 -0. 3306 -0. 5790 (0. 001) (0. 00) 1990 -0. 4592 -0. 9002 (0. 00) (0. 00) 1991 0. 0459 -0. 9010 (0. 613) (0. 00) 0. 1797 -0. 6645 1992 (0. 098) (0. 00) 1993 0. 2426 -0. 5925 (0. 111) (0. 00) 1994 -0. 0187 -0. 4753 1995 -0. 3095 (0. 008) 1996 -0. 0713 (0. 569) 1997 0. 1104 (0. 402) 1998 0. 0247 (0. 87) All -0. 0863 (0. 169) -0. 2491 (0. 00) -0. 3475 (0. 00) -0. 3565 (0. 00) -0. 3666 (0. 00) -0. 5021 (0. 00) Indpb 1. 1601 (0. 00) 1. 1696 (0. 00) 0. 9401 (0. 00) 1. 0448 (0. 00) 0. 9866 (0. 00) 1. 0956 (0. 00) 0. 8393 (0. 00) 1. 269 (0. 00) 1. 3508 (0. 00) 1. 0963 (0. 00) 1. 0051 (0. 00) 0. 7907 (0. 00) 1. 0234 0. 9481 (0. 00) 1. 0319 (0. 00) 0. 8816 (0. 00) 1. 0553 (0. 00) 1. 0321 (0. 00) Adjpm Losspm 2. 0331 -6. 2544 (0. 00) (0. 00) 3. 2891-11. 9301 (0. 00) (0. 00) 2. 0887 -5. 9880 (0. 00) (0. 00) 3. 0154 -8. 6571 (0. 00) (0. 00) 3. 6912 -6. 4419 (0. 00) (0. 00) 6. 0189 -9. 8553 (0. 00) (0. 00) 2. 0184 -9. 9218 (0. 00) (0. 00) 2. 6023-15. 3872 (0. 00) (0. 00) 1. 9280-10. 8096 (0. 00) (0. 00) 3. 0820-10. 7620 (0. 00) (0. 00) 3. 5272-12. 3146 (0. 00) (0. 00) 1. 6280-13. 7791 (0. 005) (0. 00) 3. 1253 -9. 8989 4. 3329 -9,7318 (0. 00) (0. 00) 4. 0730-13. 0282 (0. 00) (0. 0) 3. 8790-13. 5652 (0. 00) (0. 00) 3. 7902 -7. 1481 (0. 00) (0. 00) 3. 1837-10. 3220 (0. 00) (0. 00) Adjgro 0. 0371 (0. 00) 0. 1147 (0. 00) 0. 0527 (0. 00) 0. 0568 (0. 00) 0. 0883 (0. 00) 0. 0881 (0. 00) 0. 0694 (0. 00) 0. 0576 (0. 00) 0. 0815 (0. 00) 0. 0744 (0. 00) 0. 0781 (0. 00) 0. 0939 (0. 00) 0. 0834 Lev Roe -0. 2245 0. 0402 (0. 00) (0. 00) -0. 1545 0. 0541 (0. 01) (0. 00) -0. 2302 0. 0397 (0. 00) (0. 00) 0. 0585 -0. 2694 (0. 00) (0. 00) -0. 3075 0. 0542 (0. 00) (0. 00) 0. 0583 0. 0459 (0. 221) (0. 00) -0. 0675 0. 066 6 (0. 083) (0. 00) -0. 0474 0. 0574 (0. 176) (0. 00) -0. 0663 0. 0644 (0. 073) (0. 00) 0. 0683 -0. 1227 (0. 001) (0. 00) 0. 018 0. 0593 (0. 969) (0. 00) 0. 1131 0. 0828 (0. 02) (0. 00) 0. 1650 0. 0521 0. 0735 (0. 00) 0. 0649 (0. 00) 0. 0837 (0. 00) 0. 0674 (0. 00) 0. 0608 (0. 00) Rd 0. 0418 (0. 00) 0. 0627 (0. 00) 0. 0314 (0. 00) 0. 0013 (0. 845) 0. 0053 (0. 528) 0. 0323 (0. 001) 0. 0266 (0. 001) 0. 0111 (0. 122) 0. 0144 (0. 08) -0. 0052 (0. 477) 0. 0203 (0. 007) 0. 0468 (0. 00) 0. 0436 0. 0742 (0. 00) 0. 0147 (0. 133) 0. 0248 (0. 006) 0. 0341 (0. 00) 0. 0282 (0. 00) R-sq # Obs 55. 78 832 60. 99 57. 83 59. 15 56. 55 852 319 956 954 52. 97 1019 54. 15 52. 19 940 999 53. 16 1023 54. 88 1041 48. 51 1089 46. 82 1188 44. 96 1349 53. 52 1447 42. 76 1628 43. 00 1723 32. 2 1828 51. 18 19187 (0. 881) (0. 00) (0. 00) (0. 00oo)(0. 00) (0. 00) (0. 00) (0. 00) (0. 00) 0. 0908 0. 0409 (0. 284) (0. 00) 0. 1221 0. 1303 (0. 00) (0. 006) 0. 0948 0. 1596 (0. 00) (0. 00) 0. 0852 0. 2276 (0. 00) (0. 00) 0. 0805 -0. 0349 (0. 00) (0. 511) 424 s. BHOJRAJAND C. M. C. LEE we rank all the firms each year on the basis of their WEVS(or WPB), and compute the harmonic mean of the actual EVS (or PB) for these firms. ICOMPActual EVS(or PB) ratio for the closest comparable firms within the industry. This variable is the harmonic mean of the actual EVS (or PB) ratio of the four firms within the industrywith the closest warranted multiple. Essentially, this is the COMP variable with the firms constrained to come from the same industry. In short, we compute five different EVS (or PB) measures for each firm based on alternative methods of selecting comparable firms. IEVS and ISEVS(or, IPB and ISPB) correspond to prior studies that control for industry membership and firm size. The other measures incorporate risk, profitability, and growth characteristics beyond industry and size controls. We then examine their relative power in forecasting future EVS and PB ratios. As an illustration, Appendix C presents selection details for Guidant Corporation (GDT), a manufacturer of medical devices. This appendix illustrates the set of firms in the same two-digit SIC code, which are identified as peers of Guidant based on data as of April 30, 2001. Panel A reports the Panel B reports the closest firms based six closest firms based on WEVS, on WPB. We reviewed this list with a professional analyst who covers this sector. She agreed with most of the selections but questioned the absence of St. Jude Medical Devices (STJ), which she regarded as a natural peer. She agreed with our choices, however, after we discussed the profitability, growth, and risk characteristics of STJ in comparison to those of the firms listed. Table 5 reports the results for a series of forecasting regressions. In panel A, the dependent variable is EVSn, and in panel B, the dependent variable is PBn; where n = 0, 1, 2, 3, indicates the number of years into the future. In each case, we regress the future market multiple on various ex ante measures based on alternative definitions of comparable firms. 14 The table values represent the estimated coefficient for each variable averaged across 14 (n= 3) to 17 (n= 0) annual cross-sectional regressions. The bottom row reports the average adjusted r-square of the annual regressions for each model. These results show that the harmonic mean of the industry-matched firms explains 17. 5% (three-year-ahead) to 22. 9% (current year) of the crosssectional variation in future EVSratios. Including the mean EVS ratio from the closest four firms matched on size increases the adjusted r-squaresonly marginally, so that collectively IEVSand ISEVSexplain 18% to 23% of the variation in future EVSratios. These results confirm prior evidence on the usefulness of industry-based comparable firms. However, they also show that 14Even for the current year (n= 0), the warranted multiples are based on estimated coefficients from the prior years regression. Therefore, the models that involve warranted multiples are all forecasting regressions. TABLE 5 Prediction Regressions This table provides average estimated coefficients from the following prediction regressions: + EVSi,t+k = at + s j= j, tCji,t + I-i,t ES PBi,t+k = at + j=1 where k =0, 1, 2, 3. In Panel A, the dependent variable is the enterprise-value-to-sales ratio (EVS). I ratio (PB). The expanatory variables are: IEVS,the harmonic mean of the industry EVSbased on cur the harmonic mean of the actual EVS for the four closest firms matched on size after controlling for using the coefficients derived from last years estimation regressions and current year accounting and and ICOMP,the harmonic mean of the the actual EVS for the four closest firms matched on WEVS; after controlling for industry. The variables for Panel B are defined analogously, replacing EVSwith P coefficients from annual cross-sectional regressions. The bottom row reports the average adjusted r-sq Panel A: Enterprise-value-to-sales Currentyear EVS 0. 00 Inter 0. 24 0. 06 0. 00 0. 22 IEVS 1. 19 0. 08 -0. 27 -0. 26 1. 02 0. 16 0. 14 0. 16 0. 13 ISEVS COMP 0. 89 0. 16 0. 98 0. 83 WEVS 0. 33 ICOMP r-sq 22. 94 23. 46 54. 71 61. 68 62. 99 Panel B: Book-value-to-sales Current year PB 0. 07 -0. 06 -0. 07 Inter 0. 40 0. 5 IPB 1. 04 1. 19 0. 26 -0. 09 -0. 07 0. 07 ISPB 0. 16 0. 11 0. 10 0. 81 0. 35 COMP 0. 77 0. 71 WPB 0. 44 ICOMP r-sq 11. 80 12. 34 35. 21 41. 94 43. 20 One year ahead EVS 0. 01 0. 01 0. 07 0. 23 1. 05 0. 16 -0. 17 -0. 16 0. 14 0. 14 0. 12 0. 12 0. 83 0. 13 0. 80 0. 93 0. 27 21. 24 46. 14 51. 97 53. 23 One year ahead PB 0. 40 0. 15 0. 04 1. 00 0. 38 0. 12 0. 18 0. 14 0. 13 0. 65 0. 29 0. 59 8. 02 19. 91 22. 94 0. 24 1. 19 0. 27 1. 18 Two year ah 0. 0. 25 1. 06 0. 0. 0. 13 0. 20. 75 18. 37 18. 79 40. 0. 46 1. 17 0. 05 0. 12 0. 10 0. 51 0. 40 23. 38 0. 57 1. 16 Two year a 0. 50 0. 0. 96 0. 0. 0. 21 0. 7. 62 5. 01 5. 47 12. 426 S. BHOJRAJAND C. M. C. LEE he valuation accuracy of industry-based EVS ratios leaves much to be desired. In fact, industry-size based comparable firms explain less than 20% of the variation in two-year-aheadEVSratios. The predictive power of the model increases sharply with the inclusion of variables based on the warranted EVSratio (WEVS). average, a model that On includes IEVS,ISEVS,and COMPexplains over 40% of the cross-sectional variation in two-ye ar-ahead EVS ratios. Including WEVSin the model increases the average adjusted r-square on the two-year-aheadregressions to the actual WEVS ratio 45. 5%. Moreover, even after controlling for WEVS, of the closest comparable firms (COMPor ICOMP)is incrementally useful in predicting future EVSratios. It appears that comparable firms selected on the basis of their WEVS adds to the prediction of future EVSratios even after controlling for WEVS itself. COMPand ICOMPyield similar results. A model that includes IEVS,ISEVS,WEVS, ICOMPexplains between 63. 0% and (current year) and 43. 1% (three-year-ahead) of the variation in future EVS ratios. 5 Panel B reports forecasting regressions for PB. Compared to EVS,a much smaller proportion of the variation in PB is captured by these models. In the current year, the combination of IPB and ISPB explains only 12. 3% of the variation in PB. The inclusion of WPBand ICOMPincreases the adjusted r-square to 43. 2%. In future years, the explanatory power of all the models declines sharply. However, over all forecast horizons, models based on warranted multiples explain more than twice the variation in future PB ratios as compared to the industry-size matched model. The rapid decay in the explanatory power of the PB model is a possible concern with these results. Either PB ratios are difficult to forecast, or our model is missing some key forecasting variables. To shed light on this issue, we report below the serial correlation in annual EVSand PB ratios. Table values in the chart below are average Pearson correlation coefficients between the current years ratio, and the same ratio one, two, or three years later. Average Correlation Coefficient EVS1 EVSO PBO 0. 87 EVS2 0. 79 EVS3 0. 73 PB1 0. 72 PB2 0. 56 PB3 0. 44 These results show that with a one-year lag, EVSis serially correlated at 0. 7, suggesting an r-square of around 76%. With a three-year lag, EVSis serially correlated at 0. 73, suggesting an r-square of 53%. Similarly,with a one-year lag, PB is serially c orrelated at 0. 72, suggesting an r-square of 52%. With 5 We also conducted year-by-year analysis to examine the stability of these results over time. We find that a model that includes IEVS,ISEVS,WEVS, and ICOMPis extremely consistent in predicting future EVSratios. All four variables are incrementally important in predicting future EVSratios in each fore

Monday, November 25, 2019

Augustus and Pax Romana Essay Example

Augustus and Pax Romana Essay Example Augustus and Pax Romana Paper Augustus and Pax Romana Paper Name: Course: Tutor: Date: Augustus and Pax Romana Pax Romana is a Latin word that literally means the Roman Peace. It was a period in the Roman Empire that had relative peace. There was minimal military force expansion and this period lasted for approximately two hundred years. The leader who is attributed to having established this period was Caesar Augustus. Through this period, there was economic growth, art and architectural development and the commerce flourished. Augustus contribution to the Pax Romana period became a foundation to the Western rule in the past and Today. As earlier identified, Augustus is mostly credited for establishing this period. This period began after he won the Battle of Actium by defeating Marc Anthony. Since he could not succeed using the one-man rule, he formed a junta of which he placed himself as the front man. The junta was formed by joining the two great military magnates. This was a form of eliminating civil war. Even though this did not mark the end of civil wars (there was a civil war in the Alps and Spain) and Pax Romana did not begin immediately, it paved the way for its existence. By closing the Gates of Janus (Roman ceremony marking world peace) thrice, the Period slowly came into being. Through propaganda, he was able to convince the citizens that peace was better and more flourishing than obtaining wealth through dangerous wars (Matz Lawrence 150). The above only took place between the 27 B.C and 14 AD, the period, which Augustus ruled. Nevertheless, this strong foundation made this period last for another 160years. Due to its strong foundation, the period successful lasted through the Commodus rule. This is because he misruled despotically and with dispendious excesses. This ruling made the roman politics be unstable in the middle of the Germanic invasions. When Cosmmodus was assassinated, the crisis was resolved, and the peace period continued. This period was faced by many challenges even by the succeeding rulers. However, most of them followed the actions of Augustus in order to maintain this peace. When a crisis came up they sometimes made lavish ceremonies in order to close the Gates of Janus. In other cases, coins with Pax on the reverse were issued to the citizens as a way of encouraging them to choose peace over war. Literature that advocated the advantages of the Pax Romana were also established. All these enabled this era to last until the fall of the Julio-Claudian and the Nero line. It is important to note that this period was called the peace period because there were law and civil order thus lesser civil wars and other wars that came due to lack of these concepts. Due to this great foundation, most of the Western laws are formed from the Roman law. The founders of the United States spoke of establishing the Augustan Age when they decided to establish the Office of the president (Matz Lawrence 216). This meant that they recognized the works done by this emperor, the effectiveness of his concepts during his time and the centuries after. Caesar Augustus contributions to the Pax Romana were not only effective during his reign, but they were also effective in the succeeding reigns. They are greatly recognized in the modern ruling and thus incorporated in the making of some European laws. Although there are other rulers who played their role in making sure that this period was established for the longest time, he laid down the basics and the concepts. His persistent nature and propaganda were also helpful in making sure that the people got a hold of his concepts, even though they were not effected immediately as expected.

Thursday, November 21, 2019

Affect of media on teen driving and its solution Essay

Affect of media on teen driving and its solution - Essay Example 469-480) have indicated that teens have been part of more than thirty percent of traffic accidents and crashes that indicate the fatal impact of teen driving in the country. Thus, it has now become very imperative to identify the factors that promote and encourage teens to involve in driving practices, and especially reckless driving that is the major apprehension for experts (Arnett, pp. 469-480) associated with this issue. Analysis of the literature (Arnett, pp. 469-480) related to teen driving has indicated that lack of experience has been the major cause of teens’ car accidents along with a number of behavioral and developmental factors. Besides inexperience, studies have pointed out that teens do not feel the need of utilizing seat belts, and they attempt to cross the speed limits while using cell phones, having cigarettes and even alcohol during driving. Music and utilization of video screens in the cars is another common practice associated with teen driving that becomes the notion of distraction for teens, and cause accidents and crashes. While comparing data (Liu et al, pp. 1084-1088) with the adult drivers, speeding is the major factor that exists in teen driving cases that specifies the level of excitement and pleasure associated with teen driving. In addition, one can have an idea of the level of excitement by knowing that these days; the license department of vehicles has become the foremost stop for teenagers to begin their celebration of 16th birthday that shows the symbolization of cars as an adult certificate. Studies (Arnett, pp. 469-480) have shown that acquisition of a driver’s license is a significant target for teenagers to exhibit their skills and capabilities in front of their peers. In other words, getting a driver’s license nowadays stands next to high school graduation as an avenue of entering the maturity level according to teenagers (Gardner & Steinberg, pp. 625-635). In addition, peer relationships matter the

Wednesday, November 20, 2019

Culture of Excellence in the Classroom Essay Example | Topics and Well Written Essays - 750 words

Culture of Excellence in the Classroom - Essay Example The key ingredients for success in creating the best culture of excellence in the classroom are the teacher’s experiences, responsibilities, and goals. Certainly many teachers teach the way they were taught.  A teacher’s experience and philosophy are important aspects for successfully providing a culture of excellence in the classroom. For example, if the teacher believes in individualism using Mill’s philosophy, he will encourage students to focus only on themselves, which in turn could result in the development of selfish attitudes.  This will lead to developing a generation which has less effective involvement in their society. On the other hand, if the teacher believes in Bentham’s philosophy, which espouses the approach of the greatest good for the largest number of people, he will encourage students to share what they have learned with their peers.  Ã‚  This enhances the possibility of developing a generation of mutual respect for all peoples.  It is because of these factors, that educators must carefully consider their philosophy of education before they ever enter the classroom. They want to make sure that they foster a learning environment that not only fits their personality, but also is flexible enough to effectively reach all of the students in their classroom. Teacher experience is a vital component in developing a culture of excellence in the classroom because it is through these experiences that students can gain insight and knowledge in a fresh and relevant way. Likewise, there is no doubt that the participation of all stakeholders is important for creating and developing a culture of excellence.  Nevertheless, there is still a tremendous amount of responsibility thrust upon the teacher. For instance, he is charged with the task of implementing institutional rules that society expects its citizenry to uphold. Also, he is responsible to the students because the instructional techniques used in the

Monday, November 18, 2019

Supply and Demand Essay Example | Topics and Well Written Essays - 250 words

Supply and Demand - Essay Example The law of demand in economics states that with all aspects (tastes, expectation, and income) held constant; highly priced commodity will have a low demand (D1). Whereas, that of supply argues that with an increase in supply, the price (P1) of commodity will significantly reduce. An increase in demand (D2) along the curve of supply results to increase in the price (P2) of commodity; and a higher equilibrium quantity. Similarly, a reduction in the level of supply (S1) leads to a shift of the demand curve; to a high price on the equilibrium and a reduced equilibrium quantity. Efficient market theory refers to an analysis in a free market system regarding behavior of prices. It is tasked with the responsibility of determining whether prices accurately reveal essential information; necessary in determining the proper allocation of limited resources among diverse uses (Slee, 2011). Surplus implies that the capacity in demand is lesser than that supplied; whereas shortage exists when the quantity demanded is lesser than that supplied. In addition, in a situation where surplus exist there will be a constant drop of prices; similarly, shortage influences increased pricing (Market Equilibrium

Saturday, November 16, 2019

Resistance to Change in an Organisation

Resistance to Change in an Organisation Introduction Change is not an easy factor to go through. Taking in to account that it does not matter if it is a change of rules, space or simple habits. The concept of change involves many other functions. Where the resistance to it, sometimes is hard to adapt or maybe just simple depending the management and organization between one and more individuals, which makes part of an organization structure and affect a whole organization. Organizational change in inevitable Just like anything in life, in addition to this the evolution of the world markets and cultures. Makes the change something that requires constant attention and preparation. In order to be successful in any market, an organization has to be able to transform an evaluate different kind of statements that show the importance of organizational change in the develop of a company. We live in a world in which the nature of organization and the practice, most of people believe that we are in a Constance change. When the difference between theory and practice is completely relevant and plays an important role in management and helps to understand that is a vital in any organization process, which helps to analyze and create structures that help to understand the value of change. The theory of change The theory of change is a strategy or project for achieving large-scale, long-term goals. It identifies the preconditions, pathways and interventions necessary for an initiatives success in different model, where change makes a huge impact in the evolution of a system organization. Theories of change and logic models are vital to evaluate success for a number of reasons. According to Burke, Warner and his book (Organization change, theory and practice). Organizations change all the time, each and every day. The change that happens in organizations commonly is unplanned and gradual, affecting or attributing different aspects where planning is a very important tool to apply and makes this much more easy to understand and shows the importance of change and its crucial participation in the evolution of a company. For a better understanding of change, organizations are created and developed, to continue and during the last. But external factors as environment, plays a very important role in the evolution, because those are discontinuous and can cause destruction but can cause creativity as well. To affront this many others levels in managing as a planning and controlling for example, makes change a Constance factor, which decide the future or develop of any kind of system. However change sometimes could be an internal factor. For example, the change of management that brings new rules, methods and a new different path to assume new emerging markets, makes this theory unpredictable for the good of a system. The paradox of planned organization change. Sometimes when plan is the right way to follow in an organization not always is the option to assume as crucial for the right entrance of change. However this paradox can be implemented as a one of the most analytics methods to follow for a better and capable knowledge of this. According to Michael Powel and referring to the new digital technology, was quoted and saying: it will be messing and it will be confusing and we will get a lot of it wrong and well have to start over. But thats the creative process, thats the evolutionary process. (Naples daily news, 2001, p. 6A.) Mr Powell described change as a very realistic method, where the process is more linear and could be divided by phases, periods or steps and so on. The implementation process is difficult because change the system and of course the way, how the process it was made for, the things dont work well and people do they own way and in some cases the retaliation and revenge is one of the most common things to affront with many others negative aspects that make more difficult to implement a series of changes. Types of organizations change To define organizational change as the process to evaluate and reach the desired goals the first thing to have in mind in change is the concept between evolution versus revolution. The process of resistance is very common and shows the variety of circumstances to affront in management; this contrast might be is actually a very important way to think about the different forms that an organizational system can take and the correct evaluation to it. Organizational change occurs when an organization restructures resources to increase the ability to perform and create effectiveness as the principal method to arrive, similarly, to this the creation of new system of evaluation of a company for the right performance of it. Targets of changes Human resources are for an organizations most important asset, because include investment in training and modification of manage that motivates the personal for a better understanding and approach of it. In addition to it .Human resources plays a very huge impact in companies develop, because involves moral principles and workforce as a combination for the right develop of any system created to evaluate process in a safe work environment. Functional resource can be use to maximize the use of present value. Organizations can change the environment, structure and sometimes the culture of creation but technology is the most important thing to preserve. For example technologies that uses self manage work increased productivity and quality for a better develop in terms of time and production, helping to increased the creation of different products Reducing the use of time and decreasing the value in terms of production. As a result of the right use of change in a company. A technology capability, that helps to provide new products and changing the existing ones, improving the reliability and quality of goods and services of a company. Organizations might be need the restructuration of technology for a correct develop and achieve the results of a new and developing technology. Forces for and Resistance to Organizational Change Organizations and the process of change requires to face two and very important factors for the correct developed of it, one of those is change and the other is the resistance to change. Resistance to change can occur at the organizational level, group level and individual level. For example, managers should be motivated to initiate change because they are concern with improving their organization effectiveness. However, change can be threat to managers and no managerial personal as well. Almost every change requires the cooperation, collaboration, and co-ownership of others, even if that change might be beneficial some people just refused because is a natural way to response and affront. the change as fear of the unknown also to lose something of valuable, believing that change is not good for the organization and provide a different kind of elements damaging the right develop of a company in many levels and misunderstand the process of evolution. Why do people resist changing? An individual is likely to resist change for three reasons principally: uncertainty, concern over personal loss, and they believe that the change is not in the organizations best interest. In adtion to this a common example of resistance for change is giving in a normal college. Where the student are suggested and have the obligation to attend because are the rules and when they leave the college they will have to trade the known for the unknown. Some examples of resistance in organizations is when the introduction of a new analysing system means that employees will have these new methods. Some employees who are accustomed to their work routines or who have inadequate math and statistics backgrounds may fear that they will be unable to meet the system demands. They may therefore, develop a negative attitude because dont know how to use it, and prefer to judge before accept any kind of change just for fear and inclusion of different process that makes changes crucial in the develop of a company. In some case the resistance is fear for the unknown but what happens when change comes with a new structure of elements that become inconvenience for the personal? What do we should do to minimize the impact of resistance? And keep the tolerance and the right balance between employees and employers. How to break that huge wall that separates fear and commitment in the companies?. Some techniques for reducing resistance to organizational change. When management sees resistance to change as a dysfunctional, what action as a manager should I take? Several strategies have been suggested for use by managers, but in some cases the change is so extreme that brings a lot of resistance and is not enough to divide and propose steps to come in with new ideas. Is better if including tactics that helps to understand the process of change and find mediation between managers and employees. According to Barbara Senior and Steve Wailes, the resistance of change evaluate the process how the company has been created and proves the management as vital tool for the right develop and creation of strategies that helps to affiance the resistance of change and mediate between many different elements. One important step to follow in management is the implementation of education and communication, facilitation and support, negotiation and manipulation, co-optation and coercion, these tactics help to summarized and helps us to have a better look of management and understanding in how this tactics help for mediation and confront of a such a wide open variable. That involves techniques and strategies, which help to have a better understanding in the managerial concept. Tactics and strategies to reduce the resistance in organizational change Education and Communication Can help to mediate the resistance of change by helping the employees to see the logic process of change. This technique of course helps to minimize the impact of misinformation or poor communication and give the chance to aport new ideas to the system for a better compression and implementation of this. For example the correct use of communication Between agent of change and personal showing elements to improve and the importance for the good of the company but demonstrating the right benefits for the process which normally interact in the productivity and effectiveness of a company. Participation This tactic involves those individuals directly affected by the purpose of change into the decision making process. This kind of method allows expressing their feelings, increasing the quality of the process and increase employee commitment for final decision. For example, create tools for the evaluation of the process that help to understand better the inclusion of strategies showing the important of evaluation for both sides of views. Facilitation and support Involve helping employees deal with the fear and anxiety, associated with the change effort, this help could be include employee counselling and new skills training for a better use of tactics and facilitation trough the process of change. Negotiation Involves a bargain between something value for an agreement to lessen this hard process of change that sometimes can be stressful by both sides. This resistance method can be very useful, when the confrontation comes from a powerful source and shows the importance of negotiation in the process. Additionally, there is the risk that, once a change agent negotiates with one party to avoid resistance, he or she is open to the possibility of being blackmailed by other individuals in positions of power. When misunderstanding and lack of communication, makes part of the process that commonly happens in different types of organization. Manipulation Refers to cover attempts to influence others about the process of change. Sometimes involves twisting and distortion of facts to make the change appear more attractive and comprehensive. One of the common tactics to use is this particular case is creating false rumours is an example of manipulation. According to the international journal of managements reviews the use of manipulation in a change process could be illegal and immoral, because use the misunderstanding as a tool for manipulate and distort the right compression of different factors that helps to use the correct develop of tactics. Minimizing the resistance of change. Co-optation In this kind of method it is form by both manipulation and cooptation and it seeks to buy the leaders of the resistance, giving them a key role in the change decision. The last two methods are relatively inexpensive for the organization and are the easy ways to gain the support of adversaries. In addition to this sometimes this method can demonstrate that if they note this, can be sing of tricked or used. Once discovered the agent creditability may drop to cero and in the future might be a sign of confrontation and retaliation. Coercion The coercion tactic can be used to deal with the resistance fact, involves the use of different threats or force against the resisters. According to Stephen Robbins,ÂÂ  Organizational Behaviour, different organizational methods as coercion sometimes involves the use of bad recommendations and negative perform evaluation. This method should only be used when speed is of the essence or when the other person themselves has taken to public and damaging actions. Those methods listed above show the importance of management and the correct use of it. In addition to this tactics, the resistance of change in organization has different approaches that show the incursion of several strategies can be completely illegal and may undetermined change agents credibility. Being this stops the improvements in the organization. Conclusions Organizations operate in multiple environments, as a temporal, external and internal. They key task for organizations is work through a series of process or steps for mediate the impact of different factor to evaluate. Achieving External adaptation and internal integration. In addition to this, they need to anticipate and give opportunities to eliminate any possible problem or unpredictable surprises. In conclusion to this change is a very important factor to keep in mind, because if the organization doesnt have the knowledge to achieving o good process. The company can be affected and damaging the develop of a company. For that reason the implementation of strategies that allow risk evaluation and possible changes must be planned before the execution of any kind of process. Finally the use of tactics to prevent the resistance of company, while is in changing process is vital for the correct use and future develop. Because, demonstrate that organizational changes are crucial factors that involve the moral as a key to be fair with the others and the correct use of managing for good of an organization. Resistance to Change in an Organisation Resistance to Change in an Organisation Develop a plan to address below the surface resistance to change. With the research you have done so far in the course, how would you, as a manager, facilitate and manage a major change in your organization? Our company has established procedures and policies created from both a technological perspective (how to do the task) to mutual agreements with the staff leading to policies on expected behaviour etc. For changes and improvements to be successfully implemented, there needs to be not only compliance, but buy-in from staff. In order to implement a major change, a project team would be created. In the NHS, it is often standard to employ the Prince2 project management framework and depending on the nature of the project, this approach would be the probable method. Assembling the optimum project team with the correct skill mix is paramount to the successful execution and implementation of the project. Bareil (2013), defined resistance to change as a change-specific behavioural response towards a change initiative normally identified by a leader and identified it as the primary reason for change failures. Maurer (1996) described resistance as an inevitable response to change as individuals felt compelled to maintain the status quo especially if they fail to understand the rationale behind the changes in question. Maurer focussed on the poor presentation of changes as being a more significant catalyst for resistance outlining that the assumption of the manager that their change is the only possible direction and the concept that the workforce must be forced to comply would promote resistance among organisation members. According to Kruger, (xxxx), the principle issue is the established personnel change barriers which require recognition in order to be dealt with effectively. These may be company wide i.e. endemic across the workforce especially in climates with strong culture. In order to demonstrate the issue, Kruger developed a pictorial representation-the Change Management Iceberg which displays the evident and more importantly, the unseen barriers to changes within a company. Kruger lists three management issues that must be addressed in order to achieve successful implementation- Issue Management, Management of Perceptions and Beliefs and Power and Politics Management. Issue Management: This represents the top of the iceberg. Key factors are time, cost and quality. Management of Perceptions and Beliefs: It is essential to have an empathy for both the evident and covert perceptions of the workforce. Power and Politics Management: These can play a pivotal role in the change process and can influence the perceptions and beliefs significantly. According to McPheat (2014), the optimum approach is to recognise that the change will impact on all personnel at every level within the company and that they will inevitably align into one of four types: Promoters-employees who will support the changes and buy-in. Potential promoters-probable recruits to the cause however may require further convincing. Opponents-those who visibly oppose the change Hidden opponents-those who verbally support the changes however secretly oppose it. This suggests that one of the primary focuses is to develop trust and promote an honest transparency by which to increase buy-in. Middaugh and Robertson (2005) wrote that in order to succeed politically, it is imperative to use expertise wisely, in order to persuade others to buy-in. To empathize with other individuals perceptions of the managers expertise. A manager may consider something to be obvious however understanding that others may not see it as so, facilitates dialogue and change. Involving staff in the implementation of change is paramount to success. Trust cannot be assumed and is developed over a period of time. Showing integrity, treating people fairly and keeping promises over a period of time will build a healthy culture based on trust. Half (2016) suggested that it was imperative to focus on the benefits of the team in the workplace in order to persuade the employees to buy in and outlined the key points to emphasize. There are tangible benefits that are unique to each team that can be bought to the table. If the goal of the team is clearly stated along with the means by which the individual members can contribute, buy-in is more probable. The assignment requires clarity and transparency. The importance and significance of the change needs to be emphasized along with the level of prioritisation against the existing workload. Exception reporting needs to be explained so if help is required, it can be sought. Prioritisation aside, knee-jerk reactions and decisions are to be avoided and reflection advised as there may be a cosmopolitan make-up in the teams construct and empathy and understanding must be the norm to avoid conflict within the team. References: Bareil, C., (2013). Two Paradigms about resistance to change. Organization Development Journal.31.3 (Fall 2013): 59-71. Half, R., (2016, April 29). How (and why) to get employee buy-in. Retrieved March 04, 2017, from https://www.roberthalf.com/employers/hiring-advice/employee-retention/teamwork/team-buy-in Maurer, R., (1996). Using resistance to build support for change. The Journal for Quality and Participation.19.3 (Jun 1996): 56. McPheat, S., (2014, July 03). The change management iceberg. Retrieved March 04, 2017, from http://www.mtdtraining.com/blog/change-management-iceberg.htm Middaugh, D., Robertson, R. (2005). Politics in the workplace. Medsurg Nursing.14.6 (Dec 2005): 393-4.

Wednesday, November 13, 2019

Poetic Techniques in John Donnes The Dream Essay -- essays research p

The Dream, by John Donne, is a poem that is filled with passionate diction, syntax, and figurative language along with a tender tone meant to convey the almost celestial feelings Donne has for his lover. The first stanza shows a wide range of fantastical language with the intention of drawing the reader slowly and steadily into the hazy, dreamlike setting. Along with the words like ?fantasy?, ?fables? and ?dreams? come affectionate phrases that effectively show us that the poem is meant to be addressed to a lover, ?Dear love? being the most obvious example. Later on in the poem, the language shifts from drowsy and steady to more intense and complicated, yet less passionate and more doubtful. Donne?s choice in the last stanza to utilize fiery words like ?torches? and phrases ?light and put out? and ?thou cam?st to kindle? depict a sense of overwhelming passion, as uncontrollable as fire. Donne doubts that he can control his lover to continue loving him as fervently as in his dream, which is why his dream lover is ?an angel? while his lover in reality is compared to fire. Don...